Reduction in haze formation rate on prebiotic Earth in the presence of hydrogen.
نویسندگان
چکیده
Recent attempts to resolve the faint young Sun paradox have focused on an early Earth atmosphere with elevated levels of the greenhouse gases methane (CH(4)) and carbon dioxide (CO(2)) that could have provided adequate warming to Earth's surface. On Titan, the photolysis of CH(4) has been shown to create a thick haze layer that cools its surface. Unlike Titan, however, early Earth's atmosphere likely contained high amounts of CO(2) and hydrogen (H(2)). In this work, we examine haze formation in an early Earth atmosphere composed of CO(2), H(2), N(2), and CH(4), with a CO(2)/CH(4) ratio of 10 and a H(2)/CO(2) ratio of up to 15. To initiate aerosol formation, a broad-spectrum ultraviolet (UV) energy source with emission at Lyman-alpha was used to simulate the solar spectrum. Aerosol composition and total aerosol mass produced as a function of reagent gas were measured with an aerosol mass spectrometer (AMS). Results show an order of magnitude decrease in haze production with the addition of H(2), with no significant change in the chemical composition of the haze. We calculate that the presence of H(2) on early Earth could thus have favored warmer surface temperatures and yet allowed photochemical haze formation to deliver complex organic species to early Earth's surface.
منابع مشابه
The effect of alkaline earth metals (Magnesium and Calcium) on Hydrogen storage efficiency of alanate nanopowders
Different Aluminum: alkaline earth metal atomic weight ratios effects on structure transformations in alanates nanopowders were studied. Changes in crystal structures from alane to alanates by increasing alkaline earth metals dopants in the mixture with slight changes in crystal structures from rhombohedral centered – trigonal (alane) to trigonal (magnesium alanate), and monoclinic (calcium ala...
متن کاملThe effect of alkaline earth metals (Magnesium and Calcium) on Hydrogen storage efficiency of alanate nanopowders
Different Aluminum: alkaline earth metal atomic weight ratios effects on structure transformations in alanates nanopowders were studied. Changes in crystal structures from alane to alanates by increasing alkaline earth metals dopants in the mixture with slight changes in crystal structures from rhombohedral centered – trigonal (alane) to trigonal (magnesium alanate), and monoclinic (calcium ala...
متن کاملCatalytic Decomposition of Methane and Ethylene into the Carbon and Hydrogen
The role of nickel as catalyst on the conversion of methane and ethylene in a gas phase flow reactor in the absence of oxygen is studied. In this study, nickel in its different forms is used as catalyst. The role of pressure, flow rate, and temperature on the conversion of feed gases is investigated. The experiments have been carried out in the presence and absence of the catalysts to measure t...
متن کاملStudy of the Mechanism and Causes of Pore Formation in Sr-modified Al-Si Alloys
The formation of microporosity in modified Al-Si alloys has been reviewed in the present study. A major concern in modification is the increased tendency to form microporosity in the macro-shrinkage free Al-Si alloy castings. It has also been demonstrated that at low hydrogen contents (0.1cc/ 100g, Al), where only shrinkage porosity should occur, the effect of Sr-modification on porosity conten...
متن کاملStudy of the Mechanism and Causes of Pore Formation in Sr-modified Al-Si Alloys
The formation of microporosity in modified Al-Si alloys has been reviewed in the present study. A major concern in modification is the increased tendency to form microporosity in the macro-shrinkage free Al-Si alloy castings. It has also been demonstrated that at low hydrogen contents (0.1cc/ 100g, Al), where only shrinkage porosity should occur, the effect of Sr-modification on porosity conten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Astrobiology
دوره 9 5 شماره
صفحات -
تاریخ انتشار 2009